Квантовый мир

Тема в разделе 'Наука', создана пользователем Шакти, 1 май 2017.

  1. Онлайн
    Шакти

    Шакти Практикующая группа

    Квантовая-запутанность-N1-770x515.jpg


    5. Что такое квантовая запутанность? Суть простыми словами.
    Возможна ли телепортация?


    Мы в фантастических фильмах и книгах часто встречаемся с телепортацией. Вы задумывались, почему то, что придумали писатели, со временем становится нашей реальностью? Как им удаётся предсказывать будущее? Думаю, это не случайность. Часто писатели-фантасты обладают обширными знаниями по физике и другим наукам, что в сочетании с их интуицией и незаурядной фантазией помогает им построить ретроспективный анализ прошлого и смоделировать события будущего.

    Из статьи Вы узнаете:
    Что такое квантовая запутанность?
    Спор Энштейна с Бором. Кто прав?
    Теорема Белла. Спор разрешён?
    Подтверждена ли телепортация экспериментально?


    Что такое квантовая запутанность?

    Понятие «квантовая запутанность» появилось из теоретического предположения, вытекающего из уравнений квантовой механики. Оно означает вот что: если 2 квантовые частицы (ими могут быть электроны, фотоны) оказываются взаимозависимыми (запутанными), то связь сохраняется, даже если их разнести в разные части Вселенной

    Открытие квантовой запутанности в некоторой степени объясняет теоретическую возможность телепортации.

    Если получить пару фотонов одновременно, то они окажутся связанными (запутанными). А если замерить спин одного из них и он окажется положительным, то спин 2-го фотона – будьте уверены – мгновенно станет отрицательным. И, наоборот.

    Если коротко, то спином квантовой частицы (электрона, фотона) называется ёё собственный угловой момент. Спин можно представить в виде вектора, а саму квантовую частицу – в виде микроскопического магнитика.
    Важно понять, что когда за квантом, например, электроном никто не наблюдает, то он имеет все значения спина одновременно. Это фундаментальное понятие квантовой механики называется «суперпозицией».

    Представьте, что Ваш электрон вращается одновременно по часовой стрелке и против часовой стрелки. То есть он сразу в обоих состояниях спина (вектор спина вверх/вектор спина вниз). Представили? ОК. Но как только появляется наблюдатель и измеряет его состояние, электрон сам определяет, какой вектор спина ему принять – вверх или вниз.

    Хотите узнать, как измеряют спин электрона? Его помещают в магнитное поле: электроны со спином против направления поля, и со спином по направлению поля отклонятся в разные стороны. Спины фотонов измеряют, направляя в поляризационный фильтр. Если спин (или поляризация) фотона «-1», то он не проходит через фильтр, а если «+1», то проходит.

    Резюме. Как только Вы измерили состояние одного электрона и определили, что его спин «+1», то связанный или «запутанный» с ним электрон принимает значение спина «-1». Причём моментально, даже если он находится на Марсе. Хотя до измерения состояния 2-го электрона, он имел оба значения спина одновременно («+1» и «-1»).

    Этот парадокс, доказанный математически, очень не нравился Энштейну. Потому что он противоречил его открытию, что нет скорости больше, чем скорость света. Но понятие запутанных частиц доказывало: если одна из запутанных частиц будет находиться на Земле, а 2-я – на Марсе, то 1-я частица в момент замера ёё состояния мгновенно (быстрее скорости света) передаёт 2-й частице информацию, какое значение спина ей принять. А именно: противоположное значение.


    Спор Энштейна с Бором. Кто прав?

    Энштейн называл «квантовую запутанность» SPUCKHAFTE FERWIRKLUNG (нем.) или пугающим, призрачным, сверхъестественным действием на расстоянии.​

    Энштейн не соглашался с интерпретацией Бора о квантовой запутанности частиц. Потому что это противоречило его теории, что информация не может передаваться со скоростью больше скорости света. В 1935 году он опубликовал статью с описанием мысленного эксперимента. Этот эксперимент назвали «Парадоксом Эйнштейна — Подольского — Розена».

    Энштейн соглашался, что связанные частицы могут существовать, но придумал другое объяснение мгновенной передачи информации между ними. Он сказал, что «запутанные частицы» скорее напоминают пару перчаток. Представьте, что у Вас пара перчаток. Левую Вы положили в один чемодан, а правую – во второй. 1-й чемодан Вы отправили другу, а 2-й – на Луну. Когда друг получит чемодан, он будет знать, что в чемодане либо левая, либо правая перчатка. Когда же он откроет чемодан и увидит, что в нём левая перчатка, то он мгновенно узнает, что на Луне – правая. И это не означает, что друг повлиял на то, что в чемодане левая перчатка и не означает, что левая перчатка мгновенно передала информацию правой. Это только означает то, что свойства перчаток были изначально такими с момента, как их разделили. Т.е. в запутанные квантовые частицы изначально заложена информация об их состояниях.

    Так кто же был прав Бор, который считал, что связанные частицы передают друг другу информацию мгновенно, даже если они разнесены на огромные расстояния? Или Энштейн, который считал, что никакой сверхъестественной связи нет, и всё предопределено задолго до момента измерения.​

    Этот спор на 30 лет переместился в область философии. Разрешился ли спор с тех времён?


    Теорема Белла. Спор разрешён?

    Джон Клаузер, будучи ещё аспирантом Колумбийского университета, в 1967 отыскал забытую работу ирландского физика Джона Белла. Это была сенсация: оказывается Беллу удалось вывести из тупика спор Бора и Энштейна. Он предложил экспериментально проверить обе гипотезы. Для этого он предложил построить машину, которая бы создавала и сравнивала много пар запутанных частиц. Джон Клаузер принялся разрабатывать такую машину. Его машина могла создавать тысячи пар запутанных частиц и сравнивать их по разным параметрам. Результаты экспериментов доказывали правоту Бора.

    А вскоре французский физик Ален Аспе провёл опыты, один из которых касался самой сути спора между Энштейном и Бором. В этом опыте измерение одной частицы могло прямо повлиять на другую только в случае, если сигнал от 1-й ко 2-й прошёл бы со скоростью, превышающей скорость света. Но сам Энштейн доказал, что это невозможно. Оставалось только одно объяснение – необъяснимая, сверхъестественная связь между частицами.

    Результаты опытов доказали, что теоретическое предположение квантовой механики – верно. Квантовая запутанность – это реальность (Квантовая запутанность Википедия). Квантовые частицы могут быть связанными несмотря на огромные расстояния. Измерение состояния одной частицы влияет на состояние далеко расположенной от нёё 2-й частицы так, как если бы расстояния между ними не существовало. Сверхъестественная связь на расстоянии происходит в действительности.

    Остаётся вопрос, возможна ли телепортация?


    Подтверждена ли телепортация экспериментально?

    Японские учёные ещё в 2011 году впервые в мире телепортировали фотоны! Мгновенно переместили из пункта А в пункт Б пучок света.
    Для этого Нориюки Ли со своими коллегами разложили свет на частицы – фотоны. Один фотон был «квантово запутанным» с другим фотоном. Фотоны были взаимосвязанными, хотя находились в разных точках. Учёные уничтожили 1-й фотон в точке А, но он был мгновенно воссоздан в точке Б благодаря их «квантовой запутанности». До телепортации Кота Шрёдингера ещё, конечно, далеко, но 1-й шаг уже сделан.

    Хотите, чтобы за 5 минут всё, что Вы прочитали о квантовой запутанности, разложилось по полочкам – посмотрите это замечательное видео.



    ссылка
    .
  2. Онлайн
    Шакти

    Шакти Практикующая группа

    2016-05-28-09.39.58-1.jpg


    6. Кот Шредингера простыми словами.
    Суть эксперимента. Что означает парадокс «Кота Шрёдингера»?



    Короткая историческая справка

    Перед тем, как погрузиться в описание эксперимента, сделаем мини экскурс в историю.

    В начале прошлого века учёным удалось заглянуть в микромир. Несмотря на внешнюю схожесть модели «атом-электрон» с моделью «Солнце-Земля», оказалось, что в микромире не работают привычные нам ньютоновские законы классической физики. Поэтому появилась новая наука –квантовая физика и ёё составляющая – квантовая механика. Квантами назвали все микроскопические объекты микромира.
    Внимание! Один из постулатов квантовой механики – «суперпозиция». Он пригодится нам для понимания сути эксперимента Шрёдингера.

    «Суперпозиция» – это способность кванта (им может быть электрон, фотон, ядро атома) находится не в одном, а в нескольких состояниях одновременно или находится в нескольких точках пространства одновременно, если никто за ним не наблюдает.

    Нам это сложно понять, потому что в нашем мире объект может иметь только одно состояние, например, быть, или живым, или мёртвым. И может находиться только в одном определённом месте в пространстве.

    Вот простая иллюстрация отличия поведения микро- и макро объектов.Положите в одну из 2-х коробок шар. Т.к. шар – это объект нашего макро мира, Вы с уверенностью скажете: «Шар лежит только в одной из коробок, при этом во второй – пусто». Если же вместо шара возьмёте электрон, то верным будет высказывание, что он находится одновременно в 2-х коробках. Так работают законы микромира. Пример: электрон в реальности не вращается вокруг ядра атома, а находится во всех точках сферы вокруг ядра одновременно. В физике и химии, этот феномен имеет название «электронного облака».​

    Резюме. Мы поняли, что поведение очень маленького объекта и большого объекта подчиняются разным законам. Законам квантовой физики и Законам классической физики соответственно.

    Но нет науки, которая описывала бы переход от макромира в микромир. Так вот, Эрвин Шрёдингер описал свой мысленный эксперимент как раз для того, чтобы продемонстрировать неполноту общей теории физики. Он хотел, чтобы парадокс Шредингера показал, что есть наука для описания больших объектов (классическая физика) и наука для описания микрообъектов (квантовая физика). Но не хватает науки для описания перехода от квантовых систем к макросистемам.​


    Описание эксперимента с Котом Шредингера

    Эрвин Шрёдингер описал мысленный эксперимент с котом в 1935 году. Оригинальная версия описания эксперимента представлена в Википедии (Кот Шредингера Википедия).

    Вот версия описания эксперимента Кот Шредингера простыми словами:

    В закрытый стальной ящик поместили кота.
    В «ящике Шредингера» есть устройство с радиоактивным ядром и ядовитым газом, помещённым в ёмкость.
    Ядро может распасться в течение 1 часа или нет. Вероятность распада – 50%.
    Если ядро распадётся, то счётчик Гейгера зафиксирует это. Сработает реле и молоточек разобьёт ёмкость с газом. Котик Шрёдингера умрёт.
    Если – нет, то шредингеровский кот будет жив.

    Согласно закону «суперпозиции» квантовой механики в то время, когда мы не наблюдаем за системой, ядро атома (а следовательно, и кот) находится в 2-х состояниях одновременно. Ядро находится в состоянии распавшееся/нераспавшееся. А кот – в состоянии жив/мертв одновременно.

    Но мы точно знаем, если «ящик Шредингера» открыть, то кот может быть только в одном из состояний:

    если ядро не распалось – наш кот жив,
    если ядро распалось – котик мёртв.

    Парадокс эксперимента заключается в том, что согласно квантовой физике: до открытия коробки кот, и жив, и мёртв одновременно, но согласно законов физики нашего мира – это невозможно. Кот может быть в одном конкретном состоянии – быть живым или быть мёртвым. Нет смешанного состояния «кот жив/мёртв» одновременно.​

    Перед тем, как получить разгадку, посмотрите эту замечательную видео-иллюстрацию парадокса эксперимента с котом Шрёдингера (меньше 2-х минут):




    Разгадка парадокса Кота Шрёдингера – копенгагенская интерпретация

    Теперь разгадка. Обратите внимание на особую загадку квантовой механики – парадокс наблюдателя. Объект микромира (в нашем случае, ядро) находится в нескольких состояниях одновременно только пока мы не наблюдаем за системой.

    Например, знаменитый эксперимент с 2-мя щелями и наблюдателем. Когда пучок электронов направляли на непрозрачную пластину с 2-мя вертикальными щелями, то на экране за пластиной электроны рисовали «волновую картину» — вертикальные чередующиеся тёмные и светлые полосы. Но когда экспериментаторы захотели «посмотреть», как электроны пролетают сквозь щели и установили со стороны экрана «наблюдателя», электроны нарисовали на экране не «волновую картину», а 2 вертикальные полосы. Т.е. вели себя, не как волны, а как частицы.​

    Похоже на то, что квантовые частицы сами решают, какое состояние им принять в момент, когда их «замеряют».

    Исходя из этого, современное копенгагенское пояснение (интерпретация) феномена «Кота Шредингера» звучит так:

    Пока никто не наблюдает за системой «кот-ядро», ядро находится в состоянии распавшееся/нераспавшееся одновременно. Но ошибочно утверждать, что и кот жив/мёртв одновременно. Почему? Да потому что в макросистемах квантовые явления не наблюдаются. Правильнее говорить не о системе «кот-ядро», а о системе «ядро-детектор (счётчик Гейгера)».

    Ядро выбирает одно из состояний (распавшееся/нераспавшееся) в момент наблюдения (или измерения). Но этот выбор происходит не в тот момент, когда экспериментатор открывает ящик
    (открытие ящика происходит в макромире, очень далёком от мира ядра). Ядро выбирает своё состояние в момент, когда оно попадает в детектор. Дело в том, что в эксперименте система описана недостаточно.

    Таким образом, копенгагенская интерпретация парадокса Кота Шредингера отрицает, что до момента открытия ящика Кот Шредингера был в состоянии суперпозиции – находился в состоянии живого/мёртвого кота одновременно. Кот в макромире может находится и находится только в одном состоянии.​

    Резюме. Шредингер не совсем полно описал эксперимент. Не правильно (точнее, невозможно связывать) макроскопические и квантовые системы. В наших макросистемах не действуют квантовые законы. В данном эксперименте взаимодействуют не «кот-ядро», а «кот – детектор-ядро». Кот из макромира, а система «детектор-ядро» – из микромира. И только в своём квантовом мире ядро может находиться в 2-х состояниях одновременно. Это происходит до момента измерения или взаимодействия ядра с детектором. А кот в своём макромире может находиться и находится только в одном состоянии. Поэтому, это только на 1-й взгляд кажется, что состояние кота «жив-мёртв» определяется в момент открытия ящика. На самом деле его судьба определяется в момент взаимодействия детектора с ядром.

    Окончательное резюме. Состояние системы «детектор-ядро — кот» связано НЕ с человеком – наблюдателем за ящиком, а с детектором – наблюдателем за ядром.​

    Фух. Чуть мозги не закипели! Но как приятно самой понять разгадку парадокса! Как в старом студенческом анекдоте про преподавателя: «Пока рассказывал, сам понял!».


    Интерпретация Шелдона парадокса Кота Шрёдингера

    Теперь можно расслабиться и послушать самую свежую интерпретацию мысленного эксперимента Шредингера от Шелдона. Суть его интерпретации в том, что ёё можно применять в отношениях между людьми. Чтобы понять, хорошие отношения между мужчиной и женщиной или плохие – нужно открыть ящик (пойти на свидание). А до этого они, и хорошие, и плохие одновременно.



    ссылка
    .
  3. Онлайн
    Шакти

    Шакти Практикующая группа

    Квантовый-компьютер-770x515.jpg


    7. Что такое квантовый компьютер и для чего он нужен? Просто о сложном.

    Если квантовая механика не шокировала Вас, значит Вы ёё не поняли — Нильс Бор​

    Загадочные и никому не понятные законы квантовой физики – законы микромира – учёные хотят поставить на службу нашему с Вами макромиру. Не верится, что недавно квантовая физика была только в математических расчетах, спорах между физиками и мысленных экспериментах, а сейчас мы говорим об активном выпуске квантовых компьютеров! Одна из наиболее модных и авангардных тем физики наших дней – создание квантового компьютера, как реального прибора.

    Квантовый компьютер может мгновенно решать такие задачи, на решение которых даже самый современный и мощный компьютер тратит годы. Похоже мы с Вами можем стать свидетелями ещё одной технологической революции – квантовой!​

    Поисковые системы интернета переполнены запросами: «наука и технологии новости», «квантовый компьютер новости», «что такое кубит, суперпозиция кубитов?», «что такое квантовый параллелизм?». Хотите тоже узнать на них ответы?

    В этой статье мы вместе найдём ответы на эти загадочные вопросы:

    Как работает квантовый компьютер?
    Что такое кубит и суперпозиция кубитов?
    Для каких задач нужен квантовый компьютер?
    Задача коммивояжёра и задача рюкзака
    Почему боятся появления квантового компьютера?
    Когда ждать массового производства квантовых компьютеров?
    Будет ли служить квантовый компьютер заменой обычному?


    Как работает квантовый компьютер?


    В чём отличие работы квантового компьютера от компьютеров, с которыми мы работаем?

    Обычный компьютер в качестве логической единицы информации имеет бит. Биты могут принимать только 2 значения – 0 или 1. А квантовый компьютер оперирует квантовыми битами – кубитами (сокращённо). Кубиты имеют не материальную (физическую), а квантовую природу. Поэтому могут одновременно принимать значения и 0, и 1, и все значения комбинаций этих 2- х основных.

    Именно благодаря квантовой природе кубита и его способности принимать одновременно несколько значений, квантовые компьютеры имеют способность решать большое количество задач параллельно, т.е. одновременно. В то время, как бит обычного компьютера перебирает все возможные значения последовательно. Таким образом, задачу, на решение которой обычному компьютеру понадобится несколько десятков лет, квантовый компьютер решит за несколько минут.

    Но нам трудно представить, как один объект (кубит) может принимать множество значений одновременно? Не стоит расстраиваться — никто не может этого представить. Ведь законы нашего макромира отличаются от законов микромира. В нашем мире, если мы положили шар в одну из коробок, то в одной коробке будет шар (значение «1»), а в другой — пусто (значение «0»). Но в микро мире (представьте вместо шара — атом), атом может быть одновременно в 2-х коробках.

    Выдающемуся физику Ричарду Фейнману принадлежат слова: «С уверенностью можно сказать, что никто не понимает квантовой физики». Ричард Фейнман был первым физиком, который предрёк возможность появления квантового компьютера​

    Итак, не стоит волноваться, после просмотра этого видео всё станет на свои места. Просто – о сложном: как работает квантовый компьютер – видео расскажет за 2 минуты:




    Что такое кубит и суперпозиция кубитов?

    Кубит — это квантовый разряд. Как мы уже говорили выше, кубит может быть одновременно в обоих состояниях единицы и нуля и может быть не «чистым» 1 и 0, а принимать все значения их комбинаций. Фактически количество состояний или значений кубита бесконечно. Это возможно благодаря его квантовой природе.

    Кубит, будучи квантовым объектам, обладает свойством «суперпозиции», т.е. может одновременно принимать все состояния единицы и нуля и их комбинаций

    В нашем материальном мире это невозможно, поэтому это так трудно представить. Давайте разберем понятие суперпозиции кубита на примере из нашего физического макромира.

    Представим, что у нас есть один мяч и он спрятан в одной из 2-х коробок. Мы точно знаем, что мяч может находиться только в одной из коробок, а в другой – пусто. Но в микромире всё не так. Представим, что в коробке атом вместо мяча. В этом случае неправильно было бы предположить, что наш атом находится в одной из 2-х коробок. Согласно законов квантовой механики атом может находится в 2-х коробках одновременно – быть в суперпозиции.

    Бит-и-Кубит.png


    Для каких задач нужен квантовый компьютер?

    Исходя из свойства суперпозиции, кубит может выполнять вычисления параллельно. А бит – только последовательно. Обычный компьютер последовательно перебирает все возможные комбинации (варианты), например, состояния системы. Для точного описания состояния системы из 100 составляющих на квантовом компьютере понадобиться 100 кубит. А на обычном – триллионы триллионов бит (огромные объемы оперативной памяти).

    Таким образом, квантовый компьютер нужен человечеству не для просмотра видео или общения в соц сетях. С этим прекрасно справляется обычный компьютер.

    Квантовый компьютер нужен для решения задач, где для получения правильного ответа необходимо перебрать большое количество вариантов.

    Это поиск по огромным базам данных, моментальное прокладывание оптимального маршрута, подбор лекарств, создание новых материалов и множество других важных для человечества задач.

    В качестве наглядных примеров можно привести 2 задачи, которые в математике называются задачами рюкзака и коммивояжёра.


    Задача коммивояжёра и задача рюкзака

    Задача коммивояжёра. Представьте, что Вы завтра едете в отпуск и за сегодня Вам надо сделать много дел, например: закончить отчёт на работе, купить маску и ласты, пообедать, постричься, забрать посылку с почты, заехать в книжный магазин и, наконец, собрать чемодан. Дел очень много, и Вам надо так распланировать день, чтобы посетить все места за минимум времени. Казалось бы, простая задача.

    Эта задача по оптимизации перемещения по нескольким точкам в математике называется задачей коммивояжера. Поразительно, но за разумное время её невозможно решить. Если мест, немного, например, 5, то вычислить оптимальный маршрут не сложно. А если точек 15, то количество вариантов маршрутов составит 43 589 145 600. Если на оценку 1 варианта Вы потратите секунду, тогда для анализа всех вариантов Вы потратите 138 лет! Это всего для 15-ти точек маршрута!

    Задача рюкзака.
    Вот пример еще одной такой задачи. Вы, наверняка, с ней сталкивались, когда выбирали, что наиболее ценного привезти из путешествия с учетом того, что вес багажа ограничен. Не расстраивайтесь: это нетривиальная задача. Её трудно решить не только Вам, но даже и мощному компьютеру. Как решить, что упаковать в рюкзак покупок на максимальную сумму. При этом, не превысить лимит веса? Для решения этой задачи, как и задачи коммивояжёра, не хватит человеческой жизни.

    Задачи, подобные задаче коммивояжера и рюкзака, которые нельзя решить за разумное время, даже пользуясь самыми мощными компьютерами, называются NP-полными. Они очень важны в обычной жизни человека. Это задачи по оптимизации, от размещения товаров на полках склада ограниченного объема до выбора оптимальной стратегии капиталовложения.​

    Теперь у человечества появилась надежда, что такие задачи будут быстро решаться с помощью квантовых компьютеров.


    Почему боятся появления квантового компьютера?

    Большая часть криптографических технологий, например, для защиты паролей, личной переписки, финансовых транзакций, создана на том принципе, что современный компьютер не может за короткое время решить определенную задачу. Например, перемножить два числа компьютер быстро может, а вот разложить результат на простые множители ему не просто (точнее, долго).

    Пример. Чтобы разложить на два множителя число из 256 цифр, самому современному компьютеру понадобилось бы несколько десятков лет. А вот квантовый компьютер по алгоритму английского математика Питера Шора эту задачу сможет решить за несколько минут.​

    Благодаря сложности этой задачи для обычного компьютера, Вы безопасно снимаете деньги в банкомате и оплачиваете покупки платежной картой. К ней, помимо пин-кода, привязано большое число. Оно делится на Ваш пин-код без остатка. При вводе пина, банкомат делит Ваше большое число на введенный Вами пин и проверяет ответ. Для подбора правильного числа злоумышленнику понадобилось бы время, по истечении которого во Вселенной уже не осталось бы ни планеты Земля, ни платёжной карты.

    Но на радость всем криптографам квантовый компьютер в серийном варианте всё ещё не создан. Однако по запросу «квантовый компьютер новости» уже сегодня звучит ответ: «Это дело не далекого будущего». Разработки активно ведутся крупнейшими корпорациями, такими, как IBM, Intel, Google и многими другими.


    Когда ждать массового производства квантовых компьютеров?

    Одно дело разработать теорию кубита, а совсем другое дело воплотить в реальность. Для этой цели надо найти физическую систему с 2-мя квантовыми уровнями для использования в качестве 2-х базовых состояний кубита – единицы и нуля. Для решения этой задачи научные группы разных стран используют фотоны, ионы, электроны, ядра атомов, дефекты в кристаллах.

    Основных ограничений в работе кубитов два:

    количество кубитов, которые могут работать сообща
    и время их жизни.

    В 2001 году в компании IBM было выполнено тестирование 7-кубитного квантового компьютера. Квантовый компьютер IBM выполнил разложение числа 15 на простые множители по алгоритму Шора.

    В 2005 году российские учёные совместно с японскими построили 2-кубитный процессор на сверхпроводящих элементах.

    В 2009 году физики американского национального института стандартов и технологий создали программируемый квантовый компьютер, который состоял из 2-х кубит.

    В 2012 году IBM достигла прогресса в реализации вычислений при помощи сверхпроводящих кубитов. В этом же году ученым нескольких американских университетов удалось построить 2-кубитный компьютер на кристалле алмаза.

    Лидером в создании квантовых устройств является Канадская компания D-Wave System. С 2007 года D-Wave анонсирует создание таких квантовых компьютеров: 16 кубит, 28 кубит – в 2007 году, 128 кубит – в 2011 году, 512 кубит – в 2012 году, более 1000 кубит – в июне 2015 года.

    Кстати, квантовый компьютер купить у компании D-Wave можно уже сегодня за 11 миллионов долларов

    Такой компьютер уже купил Google, хотя и сам гигант интернета работает над созданием собственного квантового компьютера.

    D-Wave квантовый компьютер не универсальный, а предназначен для решения одной определенной задачи – поиска минимума какой-либо очень сложной функции. Можно представить функцию в виде горной системы. Целью оптимизации является поиск наиболее глубокой долины в горной системе.

    Задача на поиск минимальной функции очень важна для человечества и решает задачи от поиска минимальных затрат в экономике до анализа процессов фотосинтеза.

    Google сообщил, что компьютер D-Wave смог решить эту задачу (найти минимум функции) приблизительно в 100 миллионов раз быстрее, чем классический компьютер​

    Ученые полагают, активный выпуск квантовых компьютеров для решения конкретных задач можно ожидать уже через 10 лет. Универсальные же квантовые компьютеры вряд ли появятся в самом ближайшем будущем.

    Если у Вас ещё остались вопросы, можете ознакомиться со статьёй Квантовый компьютер Википедия.


    Будет ли служить квантовый компьютер заменой обычному?

    Ответы на вопросы:

    Будет ли служить квантовый компьютер заменой обычному?
    Все ли операции квантовый компьютер выполняет быстрее обычного компьютера?

    можно получить из этого видео (видео, 6 минут):



    ссылка
    .
  4. Онлайн
    Шакти

    Шакти Практикующая группа

    Тайны квантовой физики. 1 часть.

    Дебаты Бора и Эйнштейна - есть ли объективная реальность?
    Фильм рассказывает предысторию возникновения квантовой механики, начиная с изобретения лампочки Эдисона.

    Неужели квантовый мир существует только тогда, когда за ним наблюдают?
    Этим вопросом заинтересовался Джон Белл в 60-е годы.
    В поисках решения он обратился к физике в стиле нью-эйдж, где квантовая механика смешивалась с восточным мистицизмом. В результате экспериментов выяснилось, что версия реальности Эйнштейна - не может быть правдой! Свойства фотонов были вызваны к существованию только тогда, когда их измерили.
    Фотоны становятся реальными, только тогда, когда мы наблюдаем их!




    Последнее редактирование: 5 май 2017
  5. Онлайн
    Шакти

    Шакти Практикующая группа

    Тайны квантовой физики. 2 часть.
    Квантовая биология.



    Последнее редактирование: 5 май 2017
  6. Онлайн
    Mitiay

    Mitiay Пользователь

    Последнее редактирование: 15 июн 2019
  7. Онлайн
    Эриль

    Эриль Практикующая группа